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ABSTRACT
Mutual awareness of visual attention is crucial for successful collab-
oration. Previous research has explored various ways to represent
visual attention, such as field-of-view visualizations and cursor
visualizations based on eye-tracking, but these methods have limi-
tations. Verbal communication is often utilized as a complementary
strategy to overcome such disadvantages. This paper proposes a
novel method that combines verbal communication with the Cone
of Vision to improve gaze inference and mutual awareness in VR.
We conducted a within-group study with pairs of participants who
performed a collaborative analysis of data visualizations in VR. We
found that our proposed method provides a better approximation
of eye gaze than the approximation provided by head direction. Fur-
thermore, we release the first collaborative head, eyes, and verbal
behaviour dataset. The results of this study provide a foundation
for investigating the potential of verbal communication as a tool
for enhancing visual cues for joint attention.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
Collaborative interaction; Virtual reality; Visual analytics.
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Field of View, multi-modal visual attention cues, VR collaborative
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI‘23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581283

ACM Reference Format:
Riccardo Bovo, Daniele Giunchi, Ludwig Sidenmark, Joshua Newn, Hans
Gellersen, Enrico Costanza, and Thomas Heinis. 2023. Speech-Augmented
Cone-of-Vision for Exploratory Data Analysis. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (CHI ’23), April
23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3544548.3581283

1 INTRODUCTION
Mutual awareness of visual attention–the ability to identify col-
laborators’ visual attention–is crucial for successful collaboration
[22, 26, 77, 99, 111]. As such, prior studies have shown that intro-
ducing bi-directional visual attention cues in collaborative VR can
improve mutual awareness [53]. Although they offer improvements
over having no visual attention cues in virtual collaborative envi-
ronments, correctly representing users’ attention remains an open
challenge. Field-of-view-based visualisations only provide an es-
timate of visual attention [16], while pointer-based using natural
pointing modalities, such as the eye gaze [44] and head [115], does
not afford the dynamic visual representation of different types of
attention (e.g. focused and distributed [103]). Moreover, there are in-
herent limitations to using natural pointing modalities to represent
visual attention. For example, attention cues based on gaze input
can be distracting for an observer due to natural looking behaviour
[119], or ’confusing’ when there is a misalignment between a col-
laborator’s verbal references and the depicted eye-gaze location
due to eye-tracker calibration issues [26].

In this paper, we explore how combining an existing field-of-
view-based visual attention cue (‘Cone of Vision’ [16]) with verbal
communication can improve gaze inference and mutual awareness
for exploratory data analysis in VR. The Cone of Vision (CoV) visual
attention cue is a novel technique developed by Bovo et al. [16] that
leverages head behaviour to allow a more accurate representation
of users’ attention within their field of view (FoV). Existing FoV-
based techniques display the entire area within a user’s vision.
Though the technique narrows the FoV (based on gaze probability
within head coordinates), the visualisation can still contain high
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Figure 1: CoV+Speech is a multi-modal visual attention cue that narrows the cone of visual attention around keywords uttered
by participants during collaborative verbal communication.

densities of information within the ‘cone’. By using speech to direct
the CoV region towards the visual elements mentioned in verbal
communication, we can create an adaptive multi-modal approach
that continuously refines the focus of visual attention towards such
elements. Figure 1 shows how the combination of CoV+Speech
can narrow down the CoV visual attention cue based on keywords
uttered by a collaborator during exploratory data analysis.

Our proposed approach of combining CoV and verbal commu-
nication mirrors how collaborators communicate in face-to-face
settings. Research has shown that collaborators often leverage cues
from multiple modalities to gauge the visual attention of collabora-
tors, including verbal cues [117]. In particular, they first understand
the general orientation of their collaborators (i.e., by evaluating
the general direction of their head gaze) and then confirm or re-
fine the location of the visual context using verbal communica-
tion [26, 89]. Collaborative verbal communication is also used as
a fallback method when visual cues are not accurate enough or
when there are calibration errors [117]. Further, our approach is
well-suited to cross-virtuality analytics (XVA) context because XR
headsets typically have access to head and verbal behaviour, while
they do not always have eye-tracking capabilities. This makes our
approach widely applicable within the XR device ecosystem. Due to
the potential benefits of our proposal technique, we aim to answer
the following research question: How does speech in conjunction
with head behaviour impact joint attention during collaboration
and gaze inference? To address this question, we designed and con-
ducted a within-group study that compares three conditions: CoV,
CoV+Speech, and Eye-Gaze Cursor. In the study, ten pairs of par-
ticipants performed collaborative exploratory data analysis tasks
using three different dataset visualisations, testing each of the three
conditions. In the CoV condition, we used a model to model a cone
of vision using the statistical model of gaze probability, which was
projected onto VR screens [16]. In the CoV+Speech condition, we
processed the collaborative verbal communication using speech
recognition as input to narrow the CoV around the enunciated
elements of the visualisation. Lastly, we added the Eye-Gaze Cursor
condition as it is a widely used method to represent visual attention,
in which we mapped the raw eye-gaze position to a live cursor.

Our results showed that speech recognition did not lead to better
joint attention compared to CoV, due to lag and limited speech
recognition accuracy. To further investigate the potential of ver-
bal communication to negotiate shared attention, we performed a
follow-up analysis using a highly accurate speech-to-text model
to transcribe the verbal communication data collected during our
study. The transcription allowed us to analyse the types of ver-
bal references used by participants. This analysis validated our
assumption that the most common form of communication relies
on explicit keyword utterances rather than implicit verbal refer-
ences or pointing-based communication. In addition to allowing
us to perform an offline approximation of eye gaze using speech
as an input, the transcription allowed us to analyse the types of
verbal references used by participants. Our analysis demonstrated
that our proposed method improves eye gaze approximation accu-
racy by 50 pixels when the CoV regions do not constrain the eye
gaze. This suggests that speech has the potential to improve the
shared context of visual attention. Therefore, we also present the
collected data and accurate transcriptions as a dataset, which is
the first dataset of collaborative head, eyes and transcribed speech
behaviour to the best of our knowledge. Our findings and dataset
contribute to a deeper understanding of verbal communication and
gaze during collaboration.

Furthermore, we were able to estimate the impact that CoV
and CoV+speech have on individual visual attention by testing
the statistical model of gaze on which the CoV cues are based. In
the Eye-Gaze Cursor condition, the gaze distribution followed the
earlier model ( 70% of gaze samples within the non-displayed CoV).
In contrast, the CoV conditions showed that eye-gaze distribution
was considerably narrower: more than 85% of gaze samples fell
within the displayed CoV. When head-based visual attention cues
are visible (i.e. CoV), the head gaze becomes a better predictor of
eye gaze than when they are not used. Our study also enabled us
to compare bidirectional head-gaze visual attention cues and eye-
tracking cues, finding that CoV cues foster joint attention equally
or better than eye-tracking cues. We measured joint attention as the
fraction of concurrent gaze on the same area of interest (AOI), that is
a method used in research to analyze attention to individual objects
[84], we do so at two resolutions: the chart level and the screen
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level. We discuss the implications of this finding in the discussion
and conclusion section. The contribution of this paper is threefold:

(1) A novel visual FoV-based cue for collaboration that dynami-
cally changes size based on verbal communication to balance
broad and narrow information.

(2) The results of a study compared three visual cues for collabo-
ration during an exploratory data analysis task in VR. Results
showed that our proposed approach better approximates the
head gaze if compared to the approximation offered by the
head gaze alone. Moreover, head-based visual attention cues
foster joint attention equally or better than eye-tracking
visual attention cues.

(3) A dataset 1 containing the verbal, head, and eye behaviour
of ten pairs of participants collaborating in VR.

2 RELATEDWORK
2.1 Cross-virtuality Analytics in Immersive

Environments
Cross-virtuality Analytics (XVA) can support users simultaneously
via collaborative interfaces encompassing the reality–virtuality
continuum [35] and has been adopted by a large set of works [20,
21, 60, 70, 79, 91, 96, 97]. XVA has recently gained interest from
researchers due to the COVID pandemic due to the increase in
demand for remote working and collaboration. Within this scenario,
VR enables portable personal bespoke working environments that
can be used at home on the go or in hybrid modes with normal
screens [14, 32, 83]. While some of the XVAs are tailored for specific
3D data applications [20, 21, 70], there is a growing trend to support
2D content, which is cross-compatible with the standard multi-
purpose applications available on desktop PC [30, 46, 60, 71, 87,
97]. Such an approach is also followed by commercial applications
[5, 6, 27, 47, 74, 85], which either enable the display of standard
2D documents (e.g. web pages, calendar layout, office documents)
or capture arbitrary 2D windows from a desktop PC and display
them as a 2D surface in the virtual environment. Such software
allows users to set up their own layout of 2D windows in the 3D
environment (Figure 2 a) and b)) which is a problem that previous
XVA studies have explored (Figure 2 c) and d)). For example, Lee
et al. [60] illustrates how users behave when solving an analysis
task in a squared-room scenario with the freedom to position 2D
surfaces. The experiment results show that 2D screens are often
placed on the walls to present the content efficiently to others.

Qualitative analysis of Satriadi et al. [97] focused on determin-
ing the optimal shape of 2D screens around a VR user, exploring
different layouts such as spherical, spherical cap, planar, and uncon-
strained (i.e. users are free to arrange in any form in the space). The
results highlight how users prefer constrained layouts in curved
topologies, such as spherical or cylindrical. Both studies suggest
that such layouts guide users in setting up the panel configuration,
constraining them to the edges of the virtual environment. Such
findings show convergence for VR 2D screen layouts toward a con-
vex and egocentric layout, as seen in commercial VR applications
such as Meta Infinite Office [74] or XVA research ([71, 87]).

1https://github.com/Collaborative-Immersive-Visual-Toolkit/Speech-Gaze-Head-
Datatset

2.2 Mutual Awareness of Visual attention in
Collaborative VR

Awareness of other people’s visual attention is a crucial compo-
nent of collaboration. Several works have shown that visualising
collaborators’ visual attention can be an effective tool to enhance
collaboration by allowing users to predict others’ intentions and
awareness [26, 29, 77, 99, 111] or desire to communicate [26, 99].
In AR and VR settings, such visualisations are commonly displayed
through gaze cursors and have been extensively investigated and
proven to improve collaboration [10, 53, 58, 61, 67]. However, mod-
ern VR equipment commonly does not incorporate eye-tracking.
Therefore, several studies propose head orientation as an approxi-
mation of gaze [7, 24, 34, 45, 66, 90, 91] using FoV visualisations or
exploiting attention models based on head movements [18]. These
works have shown that FoV visualisations can help collaborators
establish mutual awareness and attention [10, 24, 34, 45, 91, 91, 92].
Piumsomboon et al. [91] further propose that these visualisations
could be displayed or hidden accordingly to the context of collabo-
ration to minimise visual clutter while maximising collaboration.
Based on this insight, we introduce a visualisation technique that
adapts to participants’ speech during collaboration. Because FoV-
based vizualisations help maintain mutual awareness among collab-
orators, we adopt the same metrics used in previous CSCW studies
to evaluate visual coordination [16, 26, 82, 99].

Moreover, we determine metrics based on head-tracked move-
ments embraced by previous work [15, 88, 115]. In many VR/AR
studies, visual cues are not self-visible but only shown to collabora-
tors; as such, they are called uni-directional visual cues [44, 91, 116].
The justification for mono-directionality is that users already know
where they are looking; therefore, they do need such redundant
information. Nevertheless, recent HCI studies started to explore
bi-directional cues, which can be seen by collaborators and the
producer of eye and head behaviour [16, 54]. Such studies high-
light that the feedback loop of self-visible visual attention cues is
beneficial for collaborative work, leading to less effort (i.e. drop
in task physical demand [54] and increase in visual coordination
[16]. However, previous studies have yet to compare bi-directional
head-based and eye-based cues. In our work, we fill this gap to see
which supports collaboration better and to understand whether
eye-tracking-less VR headsets can support joint attention during
collaboration. In line with the findings described, we developed a
layout for our experiment (Figure 2(e), Section 3.2.1), which consists
of a convex egocentric layout of 2D VR screens.

2.3 Verbal Communication and Mutual
Awareness of Visual attention in CSCW

Previous CSCW work by [17, 117, 118] investigated pointing tools
used to negotiate visual attention during collaboration. These stud-
ies highlight the underlying relationship between pointing tools
and the verbal channel (i.e. pointing-based communication). Such
dynamics are also explored concerning eye-gaze visualizations by
the work of D’Angelo and Begel [26] in remote pair programming
tasks. Their study proposes a taxonomy for verbal and gestural
spatial references describing different types: explicitly mentioning
specific keywords that are displayed on the screen, utterance plus
hand pointing, referring directly to the gaze visualizations ("..where
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Figure 2: This figure shows on the left two collaborative environments: (a) Immersed [51], and (b) Spatial.io [5], which enable
users to generate their configurations of 2D VR screens layouts. Figure (c) highlights circular VR scenario in cross-virtual
analytics studies of Satriadi et al. [97] and (d) a squared configuration from thework of Lee et al. [60]. Our immersed collaborative
virtual environment is depicted in (e). It consists of 4 VR screens with HTML web pages displayed in a cylindrical layout.

I am looking...") or interacting with the data (i.e. typing and select-
ing text). Further work by Pettersson et al. [89] explores how verbal
communication is used to negotiate shared visual attention in the
context of collaborative maps analysis on tabletop displays. Their
analysis found three ways of referencing the visualized data: colour
statements, size statements, and pointing gestures. Such studies
highlight how verbal communication is used by uttering visualized
labels or explicitly referring to the characteristics of the objects
visualized. Thus, multiple strategies based on these different types
of references can be used to improve visual cues through the verbal
channel. In this study, we focus specifically on the explicit naming
of visualized labels as this solution is a simple and efficient method
(by calculating word similarity [68] ) to refine visual attention.

2.4 Speech in VR interaction
Speech interfaces have been widely adopted in a wide variety of
interactive contexts [13, 41, 52, 57, 64, 65, 69, 109, 114, 120]. Speech
interface involves various challenges, such as speech recognition,
phrase interpretation, and interaction. Speech interaction has been
used in numerous works, and how the user interacts is highly
dependent on the task and the functionalities of the various released
systems [2, 37, 40, 42, 100]. Speech interaction and VR met decades
ago [28, 72, 73, 76] with the implementation of multi-modal systems
with two possible approaches: fully interactive speech or “command
and control”. The first type was speaker-dependent because the
variety of words and sentences forced the user into a training phase
called enrollment [81]. Before the recent revolution of the natural
language process (NLP), researchers adopted the paradigm of the
’Wizard of Oz’ [9, 36, 63] to avoid technical limitations of the free-
speech interfaces for both the recognition and the process phase.

However, the command and control system was speaker-
independent as the limited number of words to be converted into
commands did not require an enrolment stage. In particular, this
approach presents advantages over keyboard input or gestures in-
put [104] as the last ones necessitate practice. Furthermore, the
interaction style derived from these two approaches originate
from studies illustrating that vocabulary size can impact interac-
tion [8, 105] as well as the awareness that a machine or human
interprets speech [106]. Given these advantages, speech interaction
was experimented with in medicine to treat social phobia [108], civil
engineering to help with architectural design [25], and in dealing
with the digital twin of complex machines such as airplanes [102].

With the advent of more powerful deep learning models for
recognition and NLP, speaker-dependent systems became obsolete,
as various services [4, 38, 39, 49, 75] can receive and process au-
dio streaming that provides transcription almost in real-time. We
use these capabilities in VR to alter visual cues according to the
semantics of spoken sentences during collaboration. To our knowl-
edge, such a multi-modal interface is applied and studied for the
first time in exploratory data analysis to understand the head and
gaze behaviour. We present a novel method for visual cues that are
modified by collaborative verbal communication.

Within the collaborative scenario of 2D VR screens in cross-
virtually analytics (Section 2.1) and low-cost eye-tracker-less VR
headsets, we address the problem of conveying visual attention to
achieve mutual awareness and support collaboration. Such a task is
challenging, as the most obvious way of conveying visual attention
is to depict eye-tracking information, which is unavailable on low-
cost VR headsets. Therefore, we compare bi-directional head-based
and eye-based cues eye-tracking-less VR headsets can support joint
attention during collaboration. We explore an orthogonal approach
to address the same problem by designing and implementing a novel
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(a) CoV (b) Eye-tracking (c) CoV + speech

Figure 3: Experiment one conditions: (a) CoV: participants can see the CoV [16] (c) Eye-tracking: a visual cursor is displayed
for each participant in the raw gaze location of the eye-gaze. (c) CoV+Speech: when the participant enunciate a word which is
displayed on the VR screen the application search within the HTML context and if the word is within the CoV it shrinks the
cone to around the bounding box of the matching word

multi-modal interface which leverages natural language processing
(NLP) and head behaviour. NLP interprets natural collaborative
verbal communication to improve gaze inference, thus conveying
visual focus and supporting joint attention. Finally, we extend pre-
viously existing spatial verbal reference taxonomy by merging two
different domain taxonomies, one from remote pair programming
[26] and one from a collaborative analysis of Maps on tabletop
displays [89] (Section 2.3). To our knowledge, no dataset merges
information from the head, eye and verbal behaviour, so we fill this
gap by creating a dataset that includes this information.

3 STUDY
We designed a within-group study that compares three conditions:
Cone of Vision (CoV), Cone of Vision+Speech (CoV+Speech) and
Eye-Gaze Cursor (Figure 3). Participants were embodied in an avatar
ReadyPlayerMe2 and could also use a hand pointer to reference
the observed dataset. We used a Latin Square approach with 3
conditions. However, due to the number of participants, one order
had one more pair of participants than the other3.

3.1 Conditions
3.1.1 Cone of Vision (CoV). Inspired by Bovo et al. [16], we use a
different graphic element from the classic FoV frustum, called the
Cone of Vision (CoV) (Figure 4). Geometrically, this visualisation is
obtained by intersecting the cone that has the vertex in the centre
of the head and the direction parallel to the head direction with
the observed 2D surface. This depiction is designed to work with
data displayed on 2D surfaces (such as panels or VR screens) but
immersed in a 3D scenario (Figure 3). The main difference between
the FoV frustum and the CoV is their spatial dimensionality, that
is, 3D for the first and 2D for the second. However, both convey
probabilistic information about the gaze location since they are
aligned with the head. The CoV is displayed using the contour
2https://readyplayer.me/
3We performed additional statistical analysis to verify that no ordering or learning
effects were present, detailed in Section 4.

surrounding the area with the 70% probability of containing the
users’ fixations, achieved using the dataset of Agtzidis et al. [1].

3.1.2 Cone of Vision+Speech (CoV+Speech). The second visual cue
is a combination of CoV and the effects of the user’s verbal interac-
tion with the system. Although we use the same CoV calculation
as in the CoV condition, we designed a novel algorithm that mod-
ifies the CoV after processing the user’s speech. We describe in
Section 3.2.1 the dataset contained in the HTML pages rendered by
the virtual screens in the 3D office. To extract the semantics of the
speech, we first capture the audio of the user talking to his collabo-
rator. Therefore, we stream this audio to an online speech service
that transcribes the speech and returns a string to parse and pro-
cess with NLP algorithms. Such information is then searched in the
HTML context for those elements that contain keywords isolated
by NLP. Then, we return their bounding box coordinates within the
browser page and convert the local coordinates into world coordi-
nates and add them to a list. The next phase is the modification of
the current CoV. To reduce the CoV size, we determine the principal
component of the coordinates by doing a linear regression. Then
we calculate the standard deviation of the points along the principal
component and along its orthogonal direction. Subsequently, we
draw the ellipse using the coordinates of the centre of mass with the
two standard deviations are the two radii of the ellipse. Ultimately,
we interpolate between the CoV points and the ellipse points by a
factor of 0.5 (Figure 5 (d)). The visual cue is displayed as shown in
Figure 5 (e). Such a condition includes two different input channels:
head-based position and orientation coming from the hardware of
the HMD, and an analysis that converts the speech to a morphing
function of the CoV. While the CoV calculation relies on internal
code, a part of speech processing relies on an external service.

3.1.3 Eye-Gaze Cursor. The Eye-gaze cursor condition displays a
graphical cursor at the gaze location on the VR screen. The posi-
tion is calculated by calculating the intersection between the gaze
direction and the VR screen. The cursor is visualised as a ring (Fig-
ure 3 (b)) and has a radius of 1

3 of the radius of the fovea region
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(a) Gaze 360 dataset AFM [1] (b) 70% PBC to CoV

 
70% CoV 

Displayed Intersection 
CoV/Screen

(c) Intersection CoV/Screens

Figure 4: (a) shows the eye distribution in the longitudinal and latitude direction for the dataset of Agtzidis et al. [1] and the
number of eye samples captured by the percentile base contours (PBC). (b) illustrates the cone of vision in VR with the contour
that contains 70% of the dataset (Figure taken from [16]). (c) depicts how the intersection between 70% CoV with the VR screen
is achieved in a VR environment indicating the area of visual attention of a user.

determined by pilot testing to ensure that the cursor is noticeable.
The eye-gaze cursor is subjected to noise from the eye-tracker.

3.2 Apparatus
For our study, we provide each participant with a PicoNeo 2 HMD
with a resolution of 4K (3840 × 2160) at a refresh rate of 75Hz. The
HMD has an embedded Tobii eye-tracker that works at 90Hz and
a declared accuracy of 0.5 degrees. For verbal communication, we
set up a Microsoft Teams connection using Bluetooth headphones
and a microphone for the participants’ communication, while we
used PicoNeo 2 microphone to capture the audio streaming for the
transcription. We designed and implemented our collaborative VR
application made with Unity2020.3.34.f1, where two users shared
the same digital space, but not physical, with three different ways
of exchanging visual cues during the exploratory data analysis task.
The visual cues of each user are displayed in two different colours:
red for the local visual cue and green for the remote visual cue. All
cues are refreshed at each Unity loop with a fixed rate of 50Hz.

3.2.1 VR Environment. We designed the 3D scene with the par-
ticipants positioned in two locations close to each other in front
of four panels positioned as in Figure 2. We developed a convex
egocentric layout in line with the findings of [60, 97] described in
Section 2.1; however, since we are not limited in space by physical
constraints as [60], and we have more participants than [97] we set
our environment to have a radius of 3m compared to the 2m setup
in [97] (Figure 2). The participants were positioned in the initial
locations for all the sessions without the possibility of translating
their avatars to avoid obfuscating the other’s participant view. The
avatar was created and imported from ReadyPlayerMe. We used the
torso version of a custom avatar and implemented lip synchronisa-
tion and eye synchronisation. The four VR screens contain charts
rendered by an internal browser embedded in such panels, decoding

information from HTML/javascript files where the datasets are con-
tained. The information related to the keywords’ position in such
HTML is extracted to be used during the CoV+speech condition.

3.2.2 Data Visualisations. The three datasets used during the ex-
periment are the "Hollywood movie gender bias" based on The
Bechdel Test [12], the success of Hollywood movies with informa-
tion taken from IMDB [50], and the insurance risk for cars taken
from the UCI machine learning repository [98]. These datasets are
also used in collaborative analysis tasks by Bovo et al. [16]. Each
test includes 38 views on seven screens, one of which contains
instructions. The visualisations contain scatter plots, stacked bar
plots, histograms, and box and whisker plots. The dataset is stored
in the GitHub repository 4, and the charts at the following link 5.

Speech to Text. Real-time captioning services provide transcrip-
tions for spoken information from audio streams. Google Speech-
To-Text[39], Microsoft Cognitive Services[75], Dialogflow [38], IBM
Watson[49], Amazon Transcribe [4] are the most used services that
allow integrating a real-time API transcription in a system. We
choose Google Speech-To-Text as the one compatible with our re-
quirements of the platform (Android) and framework (Unity). The
Google Speech-to-Text service can be configured with different
parameters such as language, sample rate, automatic punctuation,
context adaptation, etc. We ran several pilots to optimise the accu-
racy and reduce the latency of the Google speech service. We used
audio with a sample rate of 16000 Hz, determined the language as
British English and consequentially hired participants that were
native British speakers and filtered out punctuation.

4https://github.com/Collaborative-Immersive-Visual-Toolkit/ConeOfVision
5https://graphs-for-collaborative-vr.web.app/
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crime 
movies have 
the higher 
average 

metascore 

Crime

Metascore

Crime

Principal 
component

σ₁

σ₂

resized contour

(a) (b) (c) (d) (e)

Linear 
Interpolation

Figure 5: This sequence of figures shows the algorithm’s steps to produce the visual cue from the combined action of CoV
and speech inputs. From the left (a), CoV is visible on the VR screen, and the user speaks to the collaborator. After speech
recognition, (b) the keywords present on the VR screen are found and filtered according to their positions. We accept the
keywords inside the CoV and discard the others, and we fit an ellipse of such keywords distribution with the axis corresponding
to the standard deviation of their components, X and Y (c). In (d), we interpolate the CoV with such an ellipse with a balanced
ratio of 0.5. In (e), the resulting visual cue is proposed to the users.

3.3 Participants
We recruited 20 participants in two weeks(13 women, 7 men, MAge
= 29.4, SDAge = 9.1) through an online platform managed by Univer-
sity College London 6. We applied several inclusion criteria when
performing a screening: being a native English speaker, having nor-
mal vision, and having a minimum education degree in high school.
In particular, the latter criterion was to ensure that participants had
sufficient knowledge to interpret the graphs of the visualization. In
addition, we required participants to be confident in interpreting
the charts we included in the study. Such charts consisted of bar
or candlestick plots, histograms, and scatter plots. Each partici-
pant was self-assessed with a questionnaire, and we summarised
the characteristics of such plots during the task presentation. One
participant declared to be an expert VR user, five with average
experience, six as occasional users, eleven with low experience and
four with no experience. Participants received compensation of £15
each for a 90 min study. We incentivised participants to perform at
their best by introducing of an additional reward of £15 each if they
reported the highest number of valid insights among all the pairs.
We recommended participants to collaborate instead of splitting
their attention into different visualisation areas.

3.4 Procedure
Upon arrival, participants were asked to read the information sheet
and sign the consent form. We carried out the experiment in the
lab using two separate offices, one for each participant. Next, we
explained the duration of the task and the three experimental con-
ditions, allowing participants to test each for 1 min. We then asked
participants to perform an exploratory data analysis task, extracting
insights from the displayed visualisations. We provided participants
with examples of valid insights. In our context, we describe a valid
insight as a recorded speech where is conveyed a precise and deep

6https://uclpsychology.sona-systems.com/

understanding of two or more measures displayed on a graph or
a series of graphs [80]. Next, we explained how to record insights
and use the hand pointer. Once instructions were clear, participants
were asked to wear the Pico Neo eye 2, perform an eye-tracking cal-
ibration process, connect to the virtual environment, and start the
collaborative task. After all VR trials (i.e. experimental conditions),
we asked participants to complete the questionnaire (Section 4.3).

At the end of the experiment, we conducted semi-structured
interviews with each participant individually. Participants were
asked to report cases in which each experimental condition helped
with the assigned task and cases that did not. The study lasted
between 75–90 minutes (M = 80, S.D. = 12.7), and the duration of
the trial lasted approximately 10 min (M = 13 m, SD = 3m). The
stop condition was reached when the time was up (13 minutes).

3.5 Offline Analysis Methods
To understand the role of verbal communication concerning nego-
tiating shared visual attention, we transcribed the recorded audio
to achieve high-accuracy transcriptions (Section 3.2.2). We anal-
ysed the transcribed data to quantify how much participants utter
displayed keywords to reference the data and howmuch they use al-
ternative methods to reference (Section 3.5.2). Furthermore, we eval-
uated whether participants’ utterances can be used in conjunction
with the head direction to refine eye-gaze inference (Section 3.5.3).

3.5.1 Speech to Text. We used an offline speech recognition sys-
tem to analyse the audio recordings with higher accuracy than the
real-time system used in the study. This framework, released in the
second part of September 2022, is the open-source project Whis-
per [93], developed by OpenAI. Such a system is trained with many
hours of multilingual spoken language. Its end-to-end architecture
is based on an encoder-decoder transformer [110] and produces
very accurate text captions. We usedWhisper with Python 3.8.3 and
PyTorch 1.12.3 [86]. The manual analysis described in the following
Section 3.5.2 ensured the transcription quality.
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Table 1: The summary of the verbal communication taxonomy we developed to analyse the video recordings.

(1) Keyword When a participant explicitly references an element by naming a specific word or name displayed in the data visualization. For
example, “I would say that a movie’s budget is ...”.

(2) Sequential When a participant references an element by naming a number representing the element, for example, "shall we move to the third
panel" or "look at the second element". An alternative expression might consist of the participant suggesting moving the focus of the
collaboration to the next or previous graph/element/page, for example: "the one next to it".

(3) Color When a participant references an element by naming its colour: "..the green one.."
(4) Context reference When a participant references to an element based on its location within the page, for example, saying "..top left corner..“ or "..the

graph below ... ". Such references can also be related to data o data, for example:" but the actual value is much lower".
(5) Pointer When a participant performs an implicit verbal reference by using the laser pointer to highlight an element directly and utter words

like "..this..", "...over here...", ".. the graph we are looking at.. " or directly mentioning "...where I’m pointing..."
(6) User relative When a participant reference an element in relation to the frame of reference of the other user, such as: on your right/left/side, close

to/far from you, above/below you ... for example, "..the graph on your right...".
(7) Temporal When a participant reference an element previously envisioned, such as before, after, or earlier... for example, "Let me check if I can

see something else from the previous one"
(8) Visual cue When a participant uses a deictic reference such as this, that or here "..this graph over here.." or when a participant directly refers to

the gaze visualization, for example, "Right where I am looking."

3.5.2 Classification of verbal references. We quantify how much
participants utter displayed keywords to reference the data and
how much they use alternative methods such as pointing gestures
or implicitly referring to visual cues. We start by merging verbal
reference taxonomies from D’Angelo and Begel [26] (i.e., remote
pair programming; Table 1 (1,3,8)) and Pettersson et al. [89] (i.e.,
collaboration over tabletop maps visualizations; Table 1 (3, 5)) to
include both text and visual element classes in the same context.
We expand the resulting taxonomy by considering novel verbal
references such as sequential statements (Table 1 (2)) that rely on
implicit directional bias left-to-right (LTR) [33]. Furthermore, we
add Context/User relative references (Table 1 (4, 6)), and temporal
references (Table 1 (7)). The transcripts were analysed alongside
video and audio recordings to gather the context of non-verbal
communication (i.e., pairs being mutually aligned or orientated
in opposite directions, performing pointing gestures with a laser
pointer, etc.). Three coders performed the analysis: each transcribed
trial was analysed by one coder and then reviewed by a second one;
the third coder resolved any disparity between the first and second
coders. The roles between coders rotate for each trial. For each
transcribed sentence, we identify if it contains a verbal element
aimed at identifying or changing the focus of the collaborative
exploratory data analysis task concerning the visualized data. If the
sentence contains a visual context negotiation, it is classified (i.e.
using the aforementioned classes), and we identify which areas of
interest the verbal communication was aiming for (i.e., data, chart,
page). After classifying all transcriptions, we counted the number
of occurrences each pair of participants performed in each experi-
mental condition. The difference between the “Keyword” class and
all other classes was immediately apparent, as the Keyword class
was more prevalent than all other classes combined.

3.5.3 Head+Speech Gaze inference . We evaluated whether the ut-
terances of keywords by the participants can be used in conjunction
with the head direction to refine eye-gaze inference.We consider the
data segments in which verbal communication is used to perform
a fairer analysis. As shown in Figure 9b, we describe the steps we
used to calculate the accuracy of Head/Gaze andHead/Gaze+Speech
methods in our analysis with respect to the ground truth, the gaze

information. Firstly, our model focuses on bi-grams, the last two
spoken words by the user at any point in time. Such a number of
words is optimal among the other n-grams. Secondly, we ran the
well-established text similarity metric Recall-Oriented Understudy
for Gisting Evaluation Lin [68] for longest common subsequences
(ROUGE-L) through all the possible keywords located inside the
CoV. Such similarity metrics range between 0 to 1, and we kept only
positive scores. We determined the bounding boxes of the accepted
keywords and evaluated which box is closest by calculating its
Euclidean distance with the Head/Gaze. Finally, we calculate the
RMSE for Head-Gaze and Head/Gaze+Speech with the eye gaze.

4 RESULTS
We structured the results into three sections. Section 4.1 reports our
analysis of how the different visual cues affected concurrent (Sec-
tion 4.1.1) and individual (Section 4.1.2) visual attention. Section 4.2
reports our analysis of how participants use verbal communication
to negotiate the shared context of visual attention (Section 4.2.1)
and how effective speech is an input to infer gaze during collabo-
ration (Section 4.2.2). Section 4.3 reports our analysis to evaluate
participants’ experience using different visual attention cues. Unless
otherwise stated, the analysis was performed with a one-way re-
peated measures (RM) ANOVA (𝛼=.05) with Condition (𝐶𝑂𝑉, 𝐸𝑦𝑒-
𝐺𝑎𝑧𝑒𝐶𝑢𝑟𝑠𝑜𝑟,𝐶𝑜𝑉+𝑆𝑝𝑒𝑒𝑐ℎ) as an independent variable. When the
assumption of sphericity was violated, as tested with Mauchly’s
test, Greenhouse-Geisser corrected values were used in the anal-
ysis. QQ-plots were used to validate the assumption of normality.
Holm-corrected post-hoc tests were used when applicable.

As mentioned in Section 3, our Latin square was not fully bal-
anced: due to the number of participants, three participant pairs
started with the CoV condition, three with the CoV+Speech condi-
tion, and four with the Eye-Gaze Cursor condition. To understand
whether our configuration led to potential biases and confounding
factors, we performed a statistical analysis to see if there were any
ordering or learning effects. We searched for an ordering effect in
our joint attention analysis, "concurrent AOI", and individual visual
attention, "gaze on own cone", by running an ANOVA analysis
and found no evidence of such an effect. Furthermore, we checked
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Figure 6: (a) on the y-axis the percentage of time in unit scale that users spent concurrently looking at a graph together (b) on
the y-axis the percentage of time that users spent concurrently looking at the same page together. (a)(b) On the x-axis of both
graphs, there are the experimental conditions. The error bars displayed represents 95% of the confidence interval. (c) show the
granularity with which we measured the joint attention. On the top (c), the screen granularity, when collaborators are focused
on the same screen. On the bottom (c), the chart granularity when collaborators are focused on the same chart.

whether there was any learning effect by performing an ANOVA
analysis on the number of insights generated across the conditions,
and we found no learning effect. This suggests that the order in
which the conditions were presented did not significantly impact
the participants’ behaviour or performance in the task, thus sug-
gesting that the approach effectively improves collaboration and
communication in data analysis. All statistical analyses are included
in the supplementary materials.

4.1 Visual Attention
We segmented the recorded visual attention data by dividing it
for each reported insight. Concurrent (Section 4.1.1) and individ-
ual (Section 4.1.2) visual attention behaviour were averaged for
each insight segment. Participants reported 179 insights. Each pair
reported a mean number of 17.6 insights (SD=5.25). Statistical anal-
ysis did not show significant differences in the number of insights.
We then investigated the duration of the insight by segmenting
each trial into the time between each insight. Participants spent,
on average, 127.24s (SD=63.57s). We found no statistical difference
between the conditions.

4.1.1 Concurrent Visual Attention in Areas Of Interest. We mea-
sured the amount of concurrent visual attention within pairs using
a semantic segmentation of the visualization. This was achieved by

calculating the percentage of time participants spent concurrently
looking at the same AOI for each insight. We did this for two AOI
levels: 𝑠𝑐𝑟𝑒𝑒𝑛𝑠 and 𝑐ℎ𝑎𝑟𝑡𝑠 . The screen AOI is defined as a full page,
981px wide, and 551px high (Figure 6c top). The chart AOI is de-
fined as an individual chart, varying between 300px and 500px wide
and 250px high (Figure 6c bottom). For the screen AOI level, the
RM ANOVA analysis revealed a statistically significant difference
(𝐹 (2, 116)=4.191, 𝑝=.017). Post-hoc comparisons only revealed a sig-
nificant difference between CoV (𝑀 = 0.703, 𝑆𝐷 = 0.211) and Eye-
tracking (𝑀 = 0.583, 𝑆𝐷 = 0.238) conditions (𝑡 = 2.895, 𝑝 = .014).
The effect size test (𝐶𝑜ℎ𝑒𝑛′𝑠𝑑 = 0.377) indicated a small to medium-
sized effect. The results showed that the presence of the CoV led to
an increase in the time participants spent concurrently looking at
the same screen by 20%. For the chart AOI level, ANOVA analysis
showed no significance. The participants spent on average 13% of
each insight looking at the same graph, but no differences emerged
from the different experimental conditions.

4.1.2 Individual visual attention behaviour. We measured how the
experimental conditions affected the participants’ eye-gaze be-
haviour by calculating the percentage of gaze samples that were
within the visual cone (Figure 7a). This measure gives us an un-
derstanding of how much the gaze diverges from the head’s direc-
tion. RM ANOVA showed a significant difference (𝐹 (1, 106)=29.007,
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𝑝<.001). Post hoc comparisons showed significant differences
between the CoV (𝑀 = 0.929, 𝑆𝐷 = 0.151) and Eye-tracking
(𝑀 = 0.541, 𝑆𝐷 = 0.383) conditions (𝑡 = 7.337, 𝑝 < .001); and
CoV+Speech (𝑀 = 0.829, 𝑆𝐷 = 0.232) and Eye-tracking conditions
(𝑡 = 5.441, 𝑝 < 0.001). All significant pairwise differences showed
Cohen’s 𝑑 > 0.8. These results show that when the CoV’s cone
intersection is visualized, the participant’s gaze is significantly less
likely to be outside the depicted region. Therefore, the region vi-
sualization acts as a container. This effect is also present in the
CoV+speech condition, where the region is dynamically modified
by voice input. To further explore how these changes affect gaze
behaviour, we plot gaze distributions for each of the conditions
(Figure 7b, Figure 7c, Figure 7d). By comparing each distribution,
two insights become apparent. First, the gaze distribution in the
Eye-tracking condition is more sparse than in other conditions.
Second, the Eye-tracking gaze distribution is most spread in the
downward direction. This indicates that users moved their gaze fur-
ther away from the head in the downward direction than in other
directions, as previously reported [101] and that other conditions
may lead to more head movement as the gaze remains within a
smaller area.

4.2 Speech and Visual Attention
4.2.1 Classification of Verbal References. We performed a classifi-
cation aiming to quantify the types (Section 4.2.1) and the targets
(Section 4.2.1) of verbal references used to negotiate the shared con-
text of visual attention (Section 3.5.2). This classification helps us
calculate the frequency of use of various verbal references (Table 1)
during collaboration. Also, understanding what targets require
more frequent referencing (Section 4.2.1) or if the typologies of
verbal references frequency change when the target changes.

Verbal References Types. We performed an RM ANOVA anal-
ysis to see if there is any significant difference in the type of
verbal reference ("(1) keywords" and "cumulative (2-8)") under

experimental conditions (Figure 8a). There was a significant differ-
ence in the number of verbal references consisting of participants
enunciating visualization keywords compared to the cumulative
sum of all other types of verbal references (𝐹 (1, 8)=50.190, 𝑝<.001).
These results highlight that our proposed approach, which inter-
sects meanings extracted from verbal communication with key-
words on the VR display, improves visual attention inference. RM
ANOVA analysis showed no significant differences between the
experimental conditions (𝐹 (2, 16)=0.211, 𝑝=0.812) nor any interac-
tions between the reference type and the experimental conditions
(𝐹 (2, 16)=0.013, 𝑝=.987). These results imply that participants did
not change their verbal communication depending on the type of
visual attention cue, and suggest that using verbal communication
as an input does not impact the verbal behaviour of users.

Verbal References Targets. We performed an RM ANOVA to com-
pare the effect of the experimental condition on the target AOI of the
verbal reference performed (Figure 8b) and found a significant differ-
ence (𝐹 (2, 14)=30.368, 𝑝<.001). Post hoc tests showed a significant
difference (𝑝 < .001) between the data (𝑀 = 25.333, 𝑆𝐷 = 11.313)
and screen (𝑀 = 2.125, 𝑆𝐷 = 2.853) targets, as well as a significant
difference (𝑝 < .001) between chart (𝑀 = 20.875, 𝑆𝐷 = 15.376)
and screen. These differences showed that participants equally ne-
gotiated visual attention via verbal communication for both the
"chart" and "data" levels, while for the "screen" level such negotia-
tion is less necessary. The analysis did not show any main effect
on experimental conditions (𝐹 (2, 14)=0.211, 𝑝=.934), nor an inter-
action between the target factors and the experimental conditions
(𝐹 (4, 14)=0.211, 𝑝=0.696) meaning that participants did not change
the way they verbally communicated depending on the type of
visual attention cue displayed. These results imply that the experi-
mental conditions did not alter verbal communication.

Pairwise comparison of Types and Targets of verbal references. We
further explored the relationship between the target AOI and the
verbal reference method by generating a pairwise frequency matrix



Speech-Augmented Cone-of-Vision for Exploratory Data Analysis CHI‘23, April 23–28, 2023, Hamburg, Germany

(1
) 

ke
yw

o
rd

s

cu
m

u
l. 

(2
-8

)

(2
) 

se
q
u
e
n
ti
a
l

(3
) 

co
lo

r

(4
) 

co
n
t 

re
l

(5
) 

p
o
in

te
r

(6
) 

u
se

r 
re

l

(7
) 

te
m

p
o
ra

l

(8
) 

vi
su

a
l c

u
e

0

20

40

60

n
u
m

b
e
r 

o
f 
o
cc

u
rr

e
n
ce

s

CoV
CoV + Speech
Eye-tracking

p=<.001***

(a) Type
d
a
ta

ch
a
rt

sc
re
e
n

p=<.001***

p=<.001***

(b) Targets

(1
) 

ke
y

w
o

rd
s

cu
m

u
l.

 (
2

-8
)

(2
) 

se
q

u
e

n
ti

a
l

(3
) 

co
lo

r

(4
) 

co
n

t 
re

l

(5
) 

p
o

in
te

r

(6
) 

u
se

r 
re

l

(7
) 

te
m

p
o

ra
l

(8
) 

v
is

u
a

l 
cu

e

p
a

g
e

g
ra

p
h

d
a

ta

0.4 1.8 0.4 0.2 0.7 0.2 0.2 0.0 0.2

12.5 5.5 1.3 0.3 2.5 0.8 0.0 0.0 0.6

21.8 1.8 0.2 0.4 0.9 0.1 0.0 0.0 0.2 100

101

(c) Pairwise Frequency

Figure 8: Analysis of verbal references to the dataset. (a) Bar charts representing the mean count of verbal reference occurrence
per trial grouped by type (types description can be seen in Table 1). In the x-axis, the classes representing the different types
of verbal communication references to the visualized data, and on the y-axis, the number of occurrences that each pair of
participants did during a single 15 min trial. Error bars represent unbiased standard error of the mean Normalized by N-1. (b)
Bar charts representing the mean count of verbal reference occurrence per trial grouped by a target area. On the x-axis, the
classes representing the different AOI targets of the verbal communication references the visualized data, and on the y-axis, the
number of occurrences that each pair of participants did during a single 15 min trial. Error bars represent unbiased standard
error of the mean Normalized by N-1. (c) Verbal communication pairwise (type/AOI) frequencies, each cell shows the mean
count per trial of each verbal references combination type/AOI. The Colour bar shows a logarithmic scale palette.

(Figure 8c) to further characterise the references. For example, it
is clear that when participants refer to the chart AOI they tend to
use a larger array of methods, which is visible by comparing the
chart row and data row. This effect is even stronger for the page
AOI where (1) keywords are no longer the most frequent method,
as in data and chart AOIs.

4.2.2 Speech and Head-Gaze as Approximation of Eye Gaze. To
evaluate whether speech helps to approximate eye gaze, we con-
ducted an offline simulation across the three experimental condi-
tions using the method described in Figure 9b. As the results of
Questionnaire Q10 (Figure 10) highlighted that the implementa-
tion of speech-to-text used during the experiment had accuracy
and latency problems, we transcribed the recorded audio of the
experiment with a novel speech-to-text algorithm as described
in Section 3.2.2. As we aim to evaluate verbal communication as
a supplementary input for gaze inference, we performed such a
comparison only for the time segments where participants were
speaking. We calculated the Euclidean distance of head-gaze and
our method (Figure 9b) from the eye gaze (ground truth) and
the root-mean-square error (RMSE) of the distances. The RMSE
was calculated in screen space; therefore, the results are pixels.
The RM ANOVA results (Figure 9a) showed a main effect for the
gaze approximation method (𝐹 (1, 45)=7.065, 𝑝=.011) and an interac-
tion between the study condition and gaze approximation method
(𝐹 (1.501, 63.210)=8.420, 𝑝=.002). Post hoc comparisons highlighted

a difference between Head+Speech (𝑀 = 178.327, 𝑆𝐷 = 142.517)
and Head (𝑀 = 174.407, 𝑆𝐷 = 40.401) in the Eye-tracking condition
(𝑡 = 4.703, 𝑝 < .001). This difference highlights how our method
outperforms the head gaze as an approximation of eye gaze in the
eye-tracking condition. An interesting insight is that this difference
is only present in the eye-tracking condition where the CoV is not
present; in the CoV and CoV+Speech conditions, the presence of
the contours keeps the vision closer to the head-gaze, therefore,
hindering the eye-gaze from spreading wider.

4.3 Questionnaire results
As part of the evaluation, we conducted a series of questionnaires
with 11 questions answered on five-point Likert scales (Figure 10).
The first two questions (Q1 and Q2) come from the System Usability
Scale (SUS) questionnaire [11], and the second pair of questions (Q3
and Q4) come from the NASA Task Load Index (NASA TLX) ques-
tionnaire [43]. Q5 and Q6 aim to understand how visual attention
cues affect attention allocation. Q5 question comes from an atten-
tion allocation questionnaire and is intended to measure how visual
cues attract attention [55] and Q6 is intended to measure howmuch
visual cues act as distraction [55]. We also introduced two ques-
tions (Q7 and Q8) related to communication to understand if, across
conditions, participants altered their verbal communication be-
haviour (Q8) or the pointing-based communication behaviour (Q9).
Q10 is specifically related to how accurately participants perceived
the underlying technologies (i.e., eye-tracking, head-tracking, and
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speech-to-text). Finally, Q11 relates to how users actively alter their
natural behaviour to improve feedback passed to collaborators via
the visual attention cue.

To analyse Likert items, we used the Wilcoxon test, with a
Kruskal–Wallis pairwise comparison for post-hoc testing where rel-
evant. We only report the statistical results where significant differ-
ences were found. Tests revealed statistically significant differences
for Q2 (𝑊 = 5.0, 𝑝 = 0.002). A pairwise comparison revealed differ-
ences (𝐻 = 9.26, 𝑝 = .0097) between CoV + speech (𝑀 = 2.40, 𝑆𝐷 =

1.02) and Eye-tracking conditions (𝑀 = 3.35, 𝑆𝐷 = 0.57). We also
found a significant Wilcoxon test for Q10 (𝑊 = 0.0, 𝑝 < 0.001). Pair-
wise comparisons revealed differences between the CoV+speech
(𝑀 = 1.65, 𝑆𝐷 = 1.11) and Eye-tracking (𝑀 = 3.15, 𝑆𝐷 = 0.73) con-
ditions (𝐻 = 24.08, 𝑝 < 0.001), and between CoV+speech and CoV
(𝑀 = 3.30, 𝑆𝐷 = 0.78) conditions (𝐻 = 3.0, 𝑝 < 0.001). Responses
to these questions highlight well-known problems when dealing
with speech recognition technologies of latency during real-time
use and difficulty in accent recognition [95]. We found no signif-
icant differences for Nasa TLX, attention, allocation, distraction,
verbal communication behaviour, pointing-based communication
behaviour, and active engagement questions.

5 QUALITATIVE ANALYSIS
Post-experiment semi-structured interviews were audio-recorded,
fully transcribed and analysed through thematic analysis [19]. Our
research questions focused on verbal communication as input for
visual attention cues and, more broadly, the role of verbal communi-
cation in collaborative exploratory data analysis. The codes for the
analysis were initially based on our research questions. Therefore,
we focused on capturing aspects relative to the perception of the
cues, comments about verbal communication, and the impact of
the CoV. However, we also included codes from the interviews,
such as lag and accuracy issues with speech-to-text technology,
workarounds when the visual attention cues lacked precision, or

CoV helping individuals to focus. The resulting 30 codes were
grouped into three themes reported in the following subsections.

5.1 Comparing the different visual cues
Although most participants reported the eye-tracking condition
as their favourite due to its precision, some noted that it did not
allow them to focus on the charts and, for this reason, preferred
the larger contoured region of the cones. For example, we heard:

“Eye-tracking was helpful If I was trying to say something specific.
But then if either of us were talking about something broader then it
would not be helpful because you missed the bigger picture. [P12]",
or: “...so sometimes during a discussion you are not talking about the
specific data point but more about the broader and the specific cursor
led me to focus on one thing at the detriment of other facts. [P16]"

Some participants reported that gaze movements were hectic
and distracting. For example, P13 mentioned: "...it was like really
distracting as I have ADHD, so it’s hard to focus its hard to concentrate
on the task, so I could not focus on my collaborator’s visual cue because
it was very confusing". Similar P3 said: "...the eye-tracking visual cue
it felt like he’s pulling me away from the where I need to focus...".

Most participants reported the CoV to be most useful during the
initial phase of mutual alignment. For example: “it was very helpful
to get aligned initially and so just for the moment what he needs to
align and maybe the moment when the other one goes away [P4]" or:
“it was helpful when the person I was collaborating with was talking
about something, but I didn’t know where she was looking for pictures
so I could see the different colour area and turns towards it [P7]". P15
said that the CoV was useful to confirm the two participants were
looking at the same thing: “I found it helpful because I knew where
she was looking, so we were able to basically be on the same page".

Several participants reported that the CoV contours allowed
them to focus on the encircled data: "...the good part of the cone was
that it helped me focus on where I was looking at, so I won’t look
in under directions. [P9]". P17 explicitly stated that they ‘liked’ the
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Figure 10: Questionnaire results

circle produced by the cones: "We were both focussing on the same
things. Like having a line around, you know what you are focussing
your attention on, that kind of helps the kind of block out everything
else". Similarly, P2 stated: "The cone was helpful as it just helps me
concentrate. I don’t really feel like it was getting on the way"

Participants commented that the bidirectional visual attention
cues made them feel more coupled and accountable and not wan-
dering around but staying on the same page. For example, P13
reported: “The cone was helpful in that it kind of kept me in the room
so I need to look at the same thing that she was describing, so she
would see that I was looking at it was very helpful".

Participants complained that in the CoV + speech condition, the
cue lagged considerably due to lag in recognition: “I feel the speech
was picking it up like in 10 seconds I did not find it to be reliable as
when it was shirking down it would do so unreliable not in the specific
area. [P13]". Similarly, P12 stated: “it felt like it was slow".

5.2 Verbal communication as a fallback.
Most participants reported that the CoV worked well for keeping
them on the same page, however, it was not very precise. So they

reported using verbal communication as the default method to
refine the accuracy of the CoV. For example: “I think it was helpful
seeing in general where the other person is looking at and then also
aligning myself with that we did without yeah but it wasn’t like with
the specifics obviously it wasn’t as helpful so I think we used more like
verbal things to see like which chart each person’s actual we read [P4]".
P6 explicitly compared the CoV to the eye-tracking cues: “with the
fixed cone compared to the eye-tracker there is a lot more to verbalise
so you had to find out like oh yeah, I have a look over there and get
more details to say to the other collaborator".

Some participants reported feeling that the eye-tracking was
sometimes not perfectly calibrated. Although initially they tried to
compensate for the error by moving their eyes, they ended up using
verbal communication to specify the location of the data they were
discussing: “the eye-tracking did get in the way a little bit because I
feel like it was sometimes it wasn’t calibrated that well, so I’m trying
to fix my attention on the specific part of the chart and then the cursor
was slightly off in another place so at first I was trying to compensate
with my eyes but that wasn’t working so I just had to ignore it and
communicate the region of interest verbally [P2]".
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5.3 CoV + Speech condition.
The CoV narrowing down on the region of interest was reported
as a welcome confirmation of the shared visual attention: “[it] was
nice to have a confirmation of the cone shrinking as it increases the
confidence that we were both looking at something [P5]". Participants
commented that it rarely focused on the wrong area: “I felt it rarely
narrows down on the wrong area, but there was delay [P19]".

Sometimes participants went beyond explicitly looking for labels
to refer to, and they attempted to direct the CoV narrowing with
spatial voice commands (e.g., top left, bottom right, etc.). The posi-
tions were expected to be understood concerning the virtual screen
at which the participant was looking. For example, P13 reported
feeling disappointed that such a strategy did not work: “I found also
that was limited in the functionality as it would not recognise top
left bottom right corners". P2 mentioned that the other participant
instead quickly reacted to such spatial references: “There were few
charts in which some of the information on the y and x axis were
the same; however, with them, I was mentioning top left or top right,
and she would very quickly look there". Therefore, the future system
which uses speech as inputs for visual attention could integrate
recognizing this type of verbal, spatial references to inform the
visual cue contours without the semantic knowledge of the context.

6 DISCUSSIONS
In this section, we discuss the results subdividing the findings in
Joint Attention (in Section 6.1) and Individual Visual Attention (in
Section 6.2). The final Section (Section 6.3) highlights the outcomes
of the speech and semantic analysis.

6.1 Comparing Joint attention
Quantitative results indicate that concurrent joint attention on VR
screens (Figure 6b) was significantly better (increment of 20%) in the
CoV condition than in the eye-tracking conditions of Section 4.1.1.
Despite the fact that the qualitative results showed that the par-
ticipants preferred the eye-tracking method, the interviews also
revealed the reasons for the success of the CoV method in joint
attention on screen AOI. Participants mentioned that the cone was
helpful to mutually orient and that they found the wider head-based
cone contour much easier to find than the eye-tracking cursor. The
size of the contour was not the only reason it was easier to find,
it also moved less. Mutual alignment (i.e., orienting themselves
along the general direction of collaborators) has been defined by
[118] as an essential phase in negotiating a shared visual attention
context and is significant for joint attention. Such results extend
previous work related to uni-directional visual attention cues of
[91], showing that in the context of 2D VR screens, bi-directional
visual attention cues based on head direction outperform the overall
mutual alignment when compared to eye-tracking cues.

Moreover, such a result extends the work of [54], which focuses
on bi-directional eye behaviour-based attention cues, as well as the
work of [16], which focuses on bi-directional head behaviour-based
attention cues; by comparing bidirectional eye-based to head-based
visual attention cues. Moreover, quantitative results indicate that,
for concurrent joint attention, the charts area of interest (Figure 6a)
all tree conditions perform equally well. This result is consistent

with the Q6 question of the questionnaire, which indicates no sta-
tistical difference across the experimental conditions. Qualitative
analysis of interviews suggests that this result could be due to the
effectiveness of verbal communication in refining and specifying
the location of the area of interest (see Section 5.2). While eye-
tracking seems to be the favourite visual attention cue, not all VR
headsets have eye-tracking capabilities, and perhaps future cheap
VR headsets will never incorporate such capabilities. Our results
show that in the context of exploratory data analysis tasks on VR
screens, cheap VR headsets using bi-directional CoV can still lead
to the same amount of joint attention, therefore, being effective.

6.2 How visual cues contours affect Individual
visual attention

Quantitative results indicate that contour-based visual cues sig-
nificantly alter individual visual attention by focussing it within
the depicted visual cone with an increase of 20% of gaze sample
within the contour when the contour is displayed compared to
a condition in which the contour is not displayed (Section 4.1.2).
Furthermore, qualitative results highlight that people perceive such
a change and focus more on the area within the depicted region
(Section 5.1). These results are consistent with the data [1] used to
generate the CoV (Figure 4) and validated by [16] with two separate
datasets [48, 59]. While the eye-tracking condition gaze samples are
comparable in percentage with the sample of the original dataset,
the CoV conditions sample shows the reported 20% increase. This
could be because the participants were aware (consciously or uncon-
sciously) that the CoV was a signal of their visual attention to the
other person. In other words, they kept their visual attention within
the highlighted region, where the other person would expect it to
be. An alternative explanation is that the contour generates an at-
tention tunnelling effect similar to the one in the small field of view
AR/VR devices [56]. Such results could be interesting in relation to
managing the attention of participants who have trouble concen-
trating, for example, because they are affected by ADHD [62]. A key
implication of such an effect is that displaying the CoV can be useful
when eye-tracking is not available. For example, metrics about the
success of collaboration based on eye-tracking [112, 113] could be
more accurately approximated using head-tracking. Furthermore, it
might be possible to more effectively adapt interaction techniques
that support eye-tracking [107] to only rely on head-tracking.

6.3 Speech as input for collaboration support
Our results indicate that participants utter keywords present in
visualization was the primary way to perform verbal references
(Section 4.2.1, Figure 8a), independently of verbal communication
being used as input for visual attention cues (Figure 8b). Such results
indicate that there is potential for speech recognition to be used
to refine gaze inference in two ways: first, searching the spoken
keywords in the users’ visual field (i.e. CoV) and exploiting their
location to refine the region of the visual cue is the best strategy
for interpreting verbal attention if compared to the other strategies
aimed at interpreting different verbal references (Table 1) because
its frequency of usage (Table 1). Second, such verbal exchange
occurs naturally, so our method does not require users to commu-
nicate differently. This suggests that when correctly implemented,
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such a method could lead to no learning/usage costs for the users.
Such results are also consistent with the outcomes of the qualitative
analysis Section 5.2: participants reported using verbal communi-
cation during collaboration as a method to overcome the lack of
precision of the CoV (due to headset slippage [78]).

However, our results indicate that further technological advances
in automatic speech recognition are needed for this approach to be-
come viable since real-time state-of-the-art speech-to-text services
(Section 3.2.2) still suffer from accuracy and lag issues. Such prob-
lems emerged from our qualitative analysis (Section 5.1) and the
questionnaire responses (Section 4.3, Figure 10). Nevertheless, we
obtained a high-accuracy transcription using the audio recording
from the experiment with an offline state-of-the-art speech-to-text
model (Section 3.5.1). We use such accurate transcription for an
additional analysis where we test speech as an input for gaze infer-
ence across all conditions (Section 4.2.2, Figure 9a). These results
illustrate that our method better approximates eye-gaze than the
head gaze alone when the CoV is not pres(Section Section 4.2.2,
Figure 9a). We show that in the eye-gaze cursor condition, speech
improves the accuracy of the head gaze by about 50px on average
(with statistical significance). Results from the same analysis also
show that in the conditions in which the CoV or CoV+Speech is
used, our method does not show improvements, most probably
because the gaze is constrained by the visual cues (as discussed
in Section 6.2). We release the dataset related to head, gaze and
accurate transcript speech behaviour, hoping that this will foster
research in this direction. Gaze inference models alternative to
eye-tracking can be beneficial for those low-cost eye-tracker-less
headsets or for offline analysis which lacks gaze data but has speech
and head direction information.

7 FUTUREWORK AND LIMITATIONS
We recognise several limitations of our work. First, subjective re-
sponses highlighted voice detection issues during the CoV+Speech
condition. The post hoc analysis addressed this issuewith a different
speech recognition engine, but it is possible that speech behaviour
during the study was affected. Second, our qualitative analysis (Sec-
tion 5.3) showed that participants often made spatial references
(that is, "on my left" or "top right corner"). These references were
not used by our technique. Further work could explore spatial ref-
erences as explicit control of visual cues. In addition, other verbal
references could be exploited to infer areas with specific colours,
shapes, images, or synonyms of visible keywords (Section 3.5.2).
Third, our current speech-based system is limited to HTML-based
VR screens that must contain tags useful for verbal referencing.
This aspect could be expanded to be viable in other environments,
for example, by leveraging meta-information of 3D environments
or the real-time segmentation of videos to provide a layer of meta-
information to be queried for collaborative communication [94].

We also envision several avenues for future work. First, our
analysis highlighted how individual visual attention is affected by
the CoV; in future work, we could explore how CoV size affects
this phenomenon. Second, the qualitative analysis showed different
qualities of head-based and eye-tracking visual cues. The CoV is
easier to find because it is wider and more stable, and the partici-
pants found it to be the best for mutual alignment. However, it lacks

precision once mutual alignment is performed (Section 5.1). Mean-
while, the eye-tracker is precise but moves erratically, distracting
users, and the cursor can be difficult to find. Future work could in-
vestigate a hybrid version that combines CoV and eye-tracking cues
to gather their advantages. Finally, our dataset of human behaviour
can be used for multiple purposes, such as evaluating leadership [3],
competence skill [23, 31]), the success of collaboration [112, 113],
and other behavioural analyses. However, the dataset is limited
to 2-dimensional data, and future work can explore 3D data. Fu-
ture challenges for 3D data include occlusions, illumination, and
different approaches to generating visual cues.

8 CONCLUSIONS
In this paper, we investigate how using verbal communication with
the Cone of Vision (CoV) can improve gaze inference and mutual
awareness for exploratory data analysis in VR. We proposed a novel
method named Speech-Augmented Cone-of-Vision which aims to
dynamically balance the broadness of the cone of vision with the
pinpoint abilities of verbal communication. We conducted a within-
group study where ten pairs of participants performed collaborative
data analysis tasks under three conditions.We used quantitative and
qualitative methods, including participants’ head and eye gaze be-
haviour, post-task questionnaires, and semi-structured interviews.
Our findings suggest that visual attention cues based on head gaze
(i.e. CoV and CoV + speech) are equally, if not more effective, in fos-
tering joint attention than those based on eye-tracking. This leads
to an increase of about 20% in concurrent gaze on the same VR
screen. The questionnaire results and the analysis of the interviews
suggest that the CoV+Speech condition was affected by the lag and
limited accuracy of the real-time speech recognition implementa-
tion we used. To overcome this limitation, we used recorded audio
to transcribe verbal communication using an offline high-accuracy
speech-to-text model. Accurate transcription allowed us to clas-
sify the type of verbal references and validate our assumption that
participants used keywords to negotiate shared visual attention.
This approach allowed us to perform a non-real-time approxima-
tion of eye gaze using speech as input. The results of this analysis
show that our proposed method improved the accuracy of gaze
by 50px when it was not constrained by CoV regions. Therefore,
we demonstrate that speech has the potential to be used as input
to dynamically alter CoV cues by narrowing the focus of visual
attention. To support further research in this area, we release the
data collected in our study as a public research dataset. To the best
of our knowledge, this is the first dataset on collaborative head, eye,
and transcribed speech behaviour made publicly available.
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