
GE-Simulator: An Open-Source Tool for Simulating Real-Time
Errors for HMD-based Eye Trackers

Ludwig Sidenmark

l.sidenmark@lancaster.ac.uk

Lancaster University

Lancaster, United Kingdom

Mathias N. Lystbæk

mathiasl@cs.au.dk

Aarhus University

Aarhus, Denmark

Hans Gellersen

h.gellersen@lancaster.ac.uk

Lancaster University

Lancaster, United Kingdom

Aarhus University

Aarhus, Denmark

ABSTRACT
As eye tracking in augmented and virtual reality (AR/VR) becomes

established, it will be used by broader demographics, increasing

the likelihood of tracking errors. Therefore, it is important when

designing eye tracking applications or interaction techniques to

test them at different signal quality levels to ensure they function

for as many people as possible. We present GE-Simulator, a novel

open-source Unity toolkit that allows the simulation of accuracy,

precision, and data loss errors during real-time usage by adding

gaze vector errors into the gaze vector from the head-mounted

AR/VR eye tracker. The tool is customisable without having to

change the source code and changes in eye tracking errors during

and in-between usage. Our toolkit allows designers to prototype

new applications at different levels of eye tracking in the early

phases of design and can be used to evaluate techniques with users

at varying signal quality levels.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI);Mixed / augmented reality;Virtual reality; User interface
toolkits.

KEYWORDS
Eye Tracking, Data Quality, Toolkit, Accuracy, Precision, Data Loss

ACM Reference Format:
Ludwig Sidenmark, Mathias N. Lystbæk, and Hans Gellersen. 2023. GE-

Simulator: An Open-Source Tool for Simulating Real-Time Errors for HMD-

based Eye Trackers. In 2023 Symposium on Eye Tracking Research and Appli-
cations (ETRA ’23), May 30–June 02, 2023, Tubingen, Germany. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3588015.3588417

1 INTRODUCTION
Eye tracking is becoming an increasingly prevalent input modality

for use within augmented and virtual reality (AR/VR) applications.

Due to its speed and because users naturally look at objects they

are interested in, gaze has been proposed as an attractive modality

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ETRA ’23, May 30–June 02, 2023, Tubingen, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0150-4/23/05. . . $15.00

https://doi.org/10.1145/3588015.3588417

for interaction and inference [David-John et al. 2021; Kytö et al.

2018; Sidenmark and Gellersen 2019]. However, tracking gaze is not

precise or easy, especially in the diverse settings exposed by mobile

head-mounted displays (HMDs). Eye trackers commonly require a

calibration process to map captured eye images to gaze directions.

Poor or missing calibrations can cause accuracy error (that is, the
difference between actual and recorded gaze directions) that can

significantly change the gaze direction. Furthermore, our constantly

moving eyes and their natural jitter introduces a natural level of

noise within gaze signals that can increase due to tracking difficul-

ties [Holmqvist et al. 2011]. Such precision error affect the stable
inference of the gaze position and also algorithms with dispersion

or velocity thresholds to detect gaze movements [Salvucci and Gold-

berg 2000] or interaction based on relative eye movements [Siden-

mark et al. 2020a]. Finally, eye tracking devices require a clear view

of the eyes, factors such as lighting and glasses can cause significant

precision and accuracy issues, and even data loss [Holmqvist et al.

2011], thus making online usage of gaze data difficult [Holmqvist

et al. 2011, 2012; Norouzi et al. 2019].

Many researchers report the accuracy and precision determined

by the manufacturer [Akkil et al. 2014; Holmqvist et al. 2012], but

these metrics are typically calculated under ideal conditions, which

are not representative of in-the-wild usage. Furthermore, in user

studies with online eye tracking data, participants with poor data

quality are commonly discarded [Ahn et al. 2020; Feit et al. 2017;

Norouzi et al. 2019]. These decisions may lead to a limited un-

derstanding of gaze-based interaction techniques and applications

since scenarios with ideal eye tracking are assumed. Furthermore,

if eye tracking error was not considered during the early develop-

ment of applications, results may be worse than expected during

evaluation as a wider demographic is employed.

Previous research has shown that eye tracking errors on the

gaze vector can have a significantly negative impact on the us-

ability of such applications [Feit et al. 2017; Norouzi et al. 2019;

Sidenmark et al. 2022]. Furthermore, if eye tracking error is not

considered during the development phase, there is a risk of acciden-

tally making gaze-based applications inaccessible for users with

poor eye tracking. HMD-based eye trackers are becoming more per-

vasive and will be used in various contexts, increasing the chance

of tracking in non-ideal conditions. During the design phase of

gaze-based interaction techniques, eye tracking errors should be an

early consideration and tested on various quality levels to predict

users’ performance in the wild. Furthermore, different works on

AR/VR-based eye tracking have simulated vector-based eye track-

ing errors with different methods, making comparison of studies

https://orcid.org/0000-0002-7965-0107
https://orcid.org/0000-0001-6624-3732
https://orcid.org/0000-0003-2233-2121
https://doi.org/10.1145/3588015.3588417
https://doi.org/10.1145/3588015.3588417

ETRA ’23, May 30–June 02, 2023, Tubingen, Germany Sidenmark et al.

difficult [Graupner et al. 2008; Mughrabi et al. 2022; Norouzi et al.

2019; Sidenmark and Gellersen 2019]. Together, these factors high-

light the necessity of a tool that allows easy use of eye tracking

errors during the development of gaze applications. Standardisa-

tion of eye tracking errors also ensures that the method of error

simulation is clear and reproducible.

To address these issues, we contribute a novel open-source Unity

tool, Gaze Error Simulator (GE-Simulator)1, that allows easy simu-

lation of eye tracking errors commonly found in gaze vectors for

HMD-based eye tracking. GE-Simulator can be used in both the

design and evaluation of techniques to give a more comprehen-

sive understanding of gaze-based techniques and applications at

various levels of data quality. GE-Simulator is designed to be uni-

versal by supporting the most commonly found HMD-based eye

trackers used for research. The methods of simulation are based on

previous works that simulate eye tracking errors of gaze vectors

and enable replicable simulation for comparison between different

research projects. The goal of GE-Simulator is to enable developers

to consider gaze errors early in the design phase of gaze-based

applications to make eye tracking more accessible.

2 RELATEDWORK
2.1 Types of Eye Tracking Error and Impact
Measuring and handling gaze signal error is an important aspect of

eye tracking and gaze-based interaction. In this context, accuracy
refers to the average difference between the true and measured gaze

directions and provides a measure of the quality of the calibration

and gaze-mapping procedure [Holmqvist et al. 2012]. Accuracy

is calculated as the angular difference (\) between the gaze ray

reported and an imaginary gaze ray projected from its origin onto

the target stimulus (Equation 1). Precision quantifies the ability of

the eye tracker to reliably reproduce a given result, regardless of

the intended gaze location, and represents an aggregate of system-

inherent, oculomotor, and environmental noise [Holmqvist et al.

2011]. Precision is commonly calculated using the root mean square

(RMS) of the intersample angular (𝛼) differences (Equation 2). For

HMD-based eye trackers, intersample angles can be calculated by

measuring the angle between successive gaze ray samples reported

by the eye tracking SDK.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛

𝑛∑︁
𝑖=1

\𝑖 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑀𝑆 =

√√
1

𝑛

𝑛∑︁
𝑖=1

(
𝛼2
𝑖

)
(2)

Finally, data loss, is defined as when a tracker is unable to output

a gaze direction, which can be caused by a poorly aligned tracker

or by user factors such as eye shape and glasses [Holmqvist et al.

2011]. Data loss is commonly calculated as the percentage of lost

data points over a defined time window. Accuracy, precision and

data loss can have a significant negative impact on gaze-based

interaction and may vary between tracking areas [Feit et al. 2017]

or over time due to changing lighting conditions, or slippage of a

1
https://github.com/ludwan/GE-Simulator

head-mounted display in AR and VR settings [Drewes et al. 2012;

Holmqvist et al. 2011; Niehorster et al. 2020].

Eye tracking errors and their impact on the user experience

within the domain of AR and VR have recently received significant

attention. Previous work has shown that precision error can have

a significant impact on gaze-based target selection [Graupner et al.

2008; Mughrabi et al. 2022]. Similarly for accuracy errors, signifi-

cant errors would cause the gaze position to be outside the target

area [Erickson et al. 2020; Graupner et al. 2008; Norouzi et al. 2019].

Accuracy error has received significant attention within the HCI

field, where researchers are using a second, more accurate modality

to refine gaze positions [Kytö et al. 2018; Sidenmark et al. 2020b;

Zhai et al. 1999]. These results highlight the importance of being

mindful of eye tracking errors early in the design process of novel

gaze applications, which we enable through our toolkit.

2.2 Error-aware Systems
The impact of eye tracking errors has led to the development of

error-aware gaze-based systems that store current eye tracking

calibration data that contain measurements of all gaze signal errors.

These recordings are then leveraged to adjust the interaction by

correcting the gaze direction [Barz et al. 2016, 2018; Fares et al.

2013], expanding the user interface widgets that are placed in areas

where the eye tracking signal is poor [Feit et al. 2017], or using

fallback modalities [Sidenmark et al. 2022]. Alternatively, incor-

rect interactions are detected via brain-computer interfaces and

corrected [Kalaganis et al. 2018]. Our toolkit allows users to proto-

type error-aware systems with artificial data without the burden of

collecting real eye tracking data at every step of the process.

2.3 Open-Source Tools
Several open-source tools have been developed for remote eye

trackers to make error measurements accessible and reproducible.

These tools are used for validation of data quality [Akkil et al. 2014],

assessment of data quality under non-ideal conditions [Clemotte

et al. 2014] or with more difficult populations [Dalrymple et al.

2018]. Most recently proposed was GazeMetrics by B. Adhanom

et al. [2020], which enables a rigorous and standardised method to

measure eye tracking errors for HMD-based eye trackers. These

toolkits emphasise the need to standardise eye tracking error mea-

surements. While these tools focus on measuring errors, we focus

on the simulation of errors to enable easy prototyping and develop-

ment with errors in mind to make eye tracking more accessible.

3 SYSTEM DESCRIPTION
GE-Simulator is a standalone package that allows online simulation

of eye tracking errors. The main benefit of GE-Simulator is that

users can easily simulate eye tracking of different quality during

every phase of design, development, and evaluation of gaze-based

applications. The gaze errors are fully customisable without mod-

ification to the source code. All changes can be saved as default

settings that can easily be swapped between each other.

3.1 Technical Specifications
GE-Simulator is a software package built in Unity. The toolkit

provides built-in support for the Unity software development kits

https://github.com/ludwan/GE-Simulator

GE-Simulator ETRA ’23, May 30–June 02, 2023, Tubingen, Germany

Figure 1: Left: GE-Simulator high-level class diagram. Right: The user defines an offset direction (\) and amplitude (𝑟) to add to
the original gazer vector (green) to simulate accuracy and precision errors.

(SDKs) of multiple AR and VR head-mounted eye trackers. These

SDKs, in turn, support multiple eye tracking platforms. The toolkit

was built using the provider model design patterns, an extensible

software design pattern that allows users to add their own sup-

port of eye tracking SDKs to the source code to support more eye

trackers and applications. Figure 1 shows a high-level overview of

GE-Simulator. Each main component is discussed in detail in the

following subsections.

The toolkit supports eye tracking from multiple manufacturers.

The toolkit includes built-in support for four eye tracking SDKs,

including the native VIVE SRAnipal SDK for VIVE Pro Eye, the

Varjo XR SDK, which can be used with the Varjo XR-3, Varjo VR-3,

and Varjo Aero, the Oculus Integration SDK, which enables Meta

Quest Pro to be used, including eye tracking, and the MRTK SDK,

which enables support of Microsoft HoloLens 2. The toolkit was

tested for functionality on Unity version 2020.3.42f using the eye

tracking SDKs: Vive SRAnipal SDK v1.3.3.0, Varjo XR SDK v3.3.0,

Oculus Integration SDK v47.0
2
and MRTK v2.8.2. The development

and testing of the system were carried out on Windows 10.

3.2 Error Simulation
GE-Simulator simulates eye tracking errors based on the gaze data

provided by the selected eye tracker’s Unity SDK. HMD-based eye

trackers commonly report gaze data in the form of a ray or origin

and direction 3D vectors from which a ray can be created. The ray

then originates from the head or eye position and is directed in

the user’s gaze direction [Duchowski et al. 2002]. Calculating an

accurate ray can be a challenging problem, widely covered in the lit-

erature [Pfeiffer et al. 2008]. These issues showcase the importance

of our toolkit, which allows testing eye tracking-based applications

at various levels of eye tracking data quality.

GE-Simulator simulates eye tracking errors by “adding” errors

to the ray provided by the eye tracking SDK. The toolkit supports

three types of eye tracking error – data loss, accuracy error, and

precision error. The methods of simulating errors are based on

previous work that has investigated the effect of online gaze errors

2
With the Oculus XR Plugin v2.2.3-preview.2.

on user experience and performance. For each type of error, we

define our simulation method and how users can adjust the error

with the toolkit.

3.2.1 Data Loss. Similarly to previous work, we define data loss as

the probability of lost gaze data due to the eye tracker not tracking

the eye and thus not outputting a gaze ray [Norouzi et al. 2019]. To

implement this error, for every data point the eye tracker outputs,

the toolkit measures the chance that the data point is overwritten

as “lost” based on a value (𝑑) set by the designer. For example, if 𝑑

is set to 0.5, there is a 50% chance that the data will be lost. If an

output is defined as lost, we do not apply the following accuracy

and precision errors.

3.2.2 Accuracy Error. Accuracy error represents a persistent angu-

lar offset between the true gaze direction and the measured gaze

direction. To implement this error, we rotate every measured gaze

ray with a constant angular amplitude in a specified rotation (Fig-

ure 1). The user defines the rotation in polar coordinates relative

to the measured gaze ray. As such, the user specifies a rotation (\)

and an amplitude (𝑟). Rotation (\) is expressed in degrees (0− 359
◦
)

where 0
◦
represents the rightwards head direction, rotating anti-

clockwise (Figure 1). The amplitude (𝑟) is expressed in visual degrees

and represents the amplitude of the rotation in the direction \ . In

Unity, the toolkit translates 𝑟 and \ into a quaternion applied to the

measured gaze ray. This allows users to easily define the direction

and amplitude of the accuracy errors.

3.2.3 Precision Error. Precision error represents a dynamic angular

difference between the true gaze direction and the measured gaze

direction. Commonly this dynamic error is calculated for every

gaze point, by sampling direction and amplitude values from pre-

defined distributions. The direction (\) is sampled from a uniform

distribution (in our case, a value between 0 − 359
◦
) [Graupner et al.

2008]. However, the amplitude of the precision error has previ-

ously been sampled from both uniform [Norouzi et al. 2019], and

Gaussian [Graupner et al. 2008; Mughrabi et al. 2022; Sidenmark

et al. 2022] distributions. Therefore, GE-Simulator includes both

“Uniform” and “Gaussian” modes for simulating the precision error.

ETRA ’23, May 30–June 02, 2023, Tubingen, Germany Sidenmark et al.

Figure 2: Easy-to-use settings allow the designer to customize various aspects of GE-Simulator. This figure shows the settings
windows for each error mode (A: Independent Mode, B: Dependent Mode, C: No Error Mode).

In Uniform mode, the user defines an upper threshold value (𝛼)

for the amplitude of the precision error. 𝑟 is then sampled from a

range between 0 and 𝛼 using the Unity function Random.Range,

which is based on the Xorshift algorithm [Marsaglia 2003]. In Gauss-

ianmode, the user defines the standard deviation (𝜎) of the Gaussian

distribution. We then sample 𝑥 , and 𝑦 from the Gaussian distribu-

tion (mean = 0, standard deviation = 𝜎), which are translated into

polar coordinates (\, 𝑟). As in previous work [Mughrabi et al. 2022],

the Gaussian distribution is approximated with the Marsaglia-polar

method [Marsaglia and Bray 1964].

3.3 Adding the Eye Tracking Error
After generating the values for data loss, accuracy error, and pre-

cision error, we add them to the gaze ray. Accuracy and precision

errors are only added if the data is not deemed lost. The accuracy

error is first added, and the precision error is added to the gaze ray

with the added accuracy error.

Previous work that has simulated eye tracking errors generally

only does so on the combined gaze ray [Mughrabi et al. 2022; Siden-

mark et al. 2022]. However, it may be of interest to add errors to only

one eye to simulate users whose eye tracking only works on one eye

or for applications which use the individual gaze signal from each

eye. To facilitate customisation, GE-Simulator provides different

“error modes” (Figure 2) that define the relationship between the

errors of each eye and the combined gaze ray:

Independent Mode: In Independent mode, the user defines

the probability of data loss, accuracy error, and precision er-

rors separately for each eye. There is no relationship between

the different gaze signals.

Dependent Mode: In this mode, the user defines all errors for

the left and right eyes, and the respective error is added to

each eye. The gaze signal is then calculated as the mean of

the eye signals. If the signal from only one eye is available,

the gaze ray will be equal to the valid eye ray. If the data

from both eyes are deemed lost, so is the combined gaze

data. This mode is not functional for eye trackers, which

only output the combined gaze ray (i.e., HoloLens 2).

Table 1: Averages and standard deviations of data quality
metric values across all participants for each condition.

Metric Normal AccSim PrecSim LossSim

Accuracy (
◦
) 1.49 ± 0.82 6.00 ± 1.14 3.61 ± 0.25 1.49 ± 0.84

Precision - RMS (
◦
) 0.29 ± 0.17 0.15 ± 0.07 4.92 ± 0.05 0.13 ± 0.10

Data Loss (%) 8.52 ± 4.10 5.20 ± 2.92 1.91 ± 1.22 51.84 ± 2.63

No Error Mode: No errors are added to the data. This allows

users to integrate GE-Simulator to their gaze data pipeline

with the option of not introducing additional errors without

having to manually adjust multiple gaze error parameters.

3.4 Evaluation
To evaluate and confirm the functionality of GE-Simulator, we per-

formed a small study where we collected sample data from four

users (2 female, 2 male, 24.58±4.25 years age) with varying levels of

eye tracking error. Participants all had normal vision without cor-

rection and had previous occasional experience with eye tracking

and VR. For this purpose, we used the HTC Vive Pro Eye head-

set and its SRAnipal SDK. We integrated GE-Simulator with the

GazeMetrics toolkit, which records data quality for HMD-based eye

trackers through a typical calibration procedure [B. Adhanom et al.

2020]. We used the preset 9 targets placed in a circular arrangement

with a radius of 0.3 metres at a 1-metre distance. We displayed

each target for 2 seconds and excluded the first 500 ms from the

calculation. The participants performed this procedure four times

with varying errors introduced:

Normal: No added eye tracking error.

AccSim: 5◦ added accuracy error in the 0
◦
direction.

PrecSim: Added Gaussian precision error with 𝜎 = 5
◦

LossSim: Added 50% probability of data loss.

All errors were applied to the gaze ray in independent mode.

Error order was counterbalanced with a balanced Latin square.

Results can be found in Table 1. The results show that our toolkit

successfully adds each type of error to the gaze signal. Note that due

to the way accuracy error is calculated (Equation 1), accuracy error

GE-Simulator ETRA ’23, May 30–June 02, 2023, Tubingen, Germany

Figure 3: In-game menu of GE-Simulator where error param-
eters can be adjusted during runtime.

increase with an increase in added precision error. Furthermore,

note that this study is aimed at merely confirming the functionality

of our toolkit and should not be treated as an empirical study of

the eye tracker.

4 SYSTEM USAGE
GE-Simulator is designed as an easy-to-use Unity package that can

be added to any Unity project. The toolkit includes events that can

be subscribed for easy integration into the eye tracking pipeline,

whether for simple prototyping of new interaction techniques or

applications or as part of formal user studies.

GE-Simulator includes all the source code and assets necessary

for usage. The user simply has to add the toolkit, which can be

found on its GitHub page
3
and the SDK of their eye tracker. Once

the package has been added, the developer has to add the “GE-

Controller” or “GE-Menu” prefab to the project scene by dragging

and dropping it in the hierarchy window. The GE-Controller prefab

enables changes to the error simulation via the editor window

(Figure 2). Users can change the eye tracker, how to activate the

error simulator (via a Unity Action), error mode, and, depending

on the error mode, the error parameters of the gaze and individual

eyes. Error parameters are implemented as scriptable objects, which

means that error parameters can be saved as presets that can be

dragged and dropped into GE-Controller.

The GE-Menu prefab also includes a menu added to the virtual

environment (Figure 3). This allows developers to adjust parame-

ters without removing the HMD to change settings in the Unity

editor. The in-game menu is implemented via the standard Unity

UI package, and the toolkit uses the same provider pattern as eye

trackers so that users can define how to interact with the menu.

Finally, the toolkit includes a gaze trail script which visualizes the

erroneous or original gaze trails during use (Figure 4). Users simply

define which eye (gaze, right, left) and signal to trace (original,

erroneous). Multiple traces can be added without issue.

3
https://github.com/ludwan/GE-Simulator

Figure 4: Gaze trail of GE-Simulator to visualize gaze.

5 LIMITATIONS AND FUTUREWORK
GE-Simulator only approximates gaze errors, and using eye tracking

in the wild may lead to different error behaviours and thus results

for any designed application or interaction technique. Furthermore,

our error simulation could be expanded. The errors included in the

toolkit focus on gaze vector errors. The toolkit could be expanded

to include errors on the pupil size, and latency of the eye tracker.

Furthermore, the included errors could also be expanded. For ex-

ample, our data loss calculation does not support the simulation of

long periods of data loss caused by misalignment of the eye tracker

or blinks. In addition, data loss is often accompanied by artefacts

causing significant shifts in the data [Holmqvist et al. 2011]. These

aspects could be supported in future versions of the toolkit. In ad-

dition, previous research has shown that eye trackers tend to be

more accurate when users are looking straight ahead compared to

glancing [Feit et al. 2017]. Being able to define areas of the tracking

area with different levels of eye tracking error could be a beneficial

addition. Furthermore, our precision simulation assumes symmet-

rical distributions. However, previous work has shown that noise

does not have to be symmetrical [Feit et al. 2017]. Being able to

define asymmetric precision simulation would make the error sim-

ulation more akin to eye tracking in the wild. Finally, a significant

limitation of our work is that we only tested a part of the toolkit’s

functionality on users and had a relatively small sample size. While

we are confident in its functionality, the effect of the toolkit on user

studies has not been formally evaluated.

6 CONCLUSION
Data quality is a vital component for the accessible and frictionless

use of gaze. Therefore it is important to consider data quality and

how to handle poor data early in the design phase when developing

gaze-based applications and interaction techniques. GE-Simulator

is open-source software designed to enable developers to easily

incorporate eye tracking errors as early as possible during develop-

ment. GE-Simulator’s fully customisable user interface makes the

toolkit accessible for users with various coding experiences, and the

in-game menu allows rapid prototyping of different eye tracking

error levels. As eye tracking for HMD becomes more prevalent

and used in various contexts, considering poor data quality will

become increasingly important. We aim to continue the support

of GE-Simulator to extend functionality and include more and fu-

ture HMD eye trackers to help designers make eye tracking more

accessible for users.

https://github.com/ludwan/GE-Simulator

ETRA ’23, May 30–June 02, 2023, Tubingen, Germany Sidenmark et al.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation

programme (Grant No. 101021229, GEMINI: Gaze and Eye Move-

ment in Interaction) and by the Innovation Fund Denmark, as part

of the Manufacturing Academy of Denmark (MADE) FAST project.

REFERENCES
Sunggeun Ahn, Jeongmin Son, Sangyoon Lee, and Geehyuk Lee. 2020. Verge-It: Gaze

Interaction for a Binocular Head-WornDisplay UsingModulatedDisparity Vergence

Eye Movement. In Extended Abstracts of the 2020 CHI Conference on Human Factors
in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). ACM, New York, NY, USA,

1–7. https://doi.org/10.1145/3334480.3382908

Deepak Akkil, Poika Isokoski, Jari Kangas, Jussi Rantala, and Roope Raisamo. 2014.

TraQuMe: A Tool for Measuring the Gaze Tracking Quality. In Proceedings of the
Symposium on Eye Tracking Research and Applications (Safety Harbor, Florida)

(ETRA ’14). Association for Computing Machinery, New York, NY, USA, 327–330.

https://doi.org/10.1145/2578153.2578192

Isayas B. Adhanom, Samantha C. Lee, Eelke Folmer, and Paul MacNeilage. 2020. Gaze-

Metrics: An Open-Source Tool for Measuring the Data Quality of HMD-Based Eye

Trackers. In ACM Symposium on Eye Tracking Research and Applications (Stuttgart,
Germany) (ETRA ’20 Short Papers). Association for Computing Machinery, New

York, NY, USA, Article 19, 5 pages. https://doi.org/10.1145/3379156.3391374

Michael Barz, Florian Daiber, and Andreas Bulling. 2016. Prediction of Gaze Estimation

Error for Error-Aware Gaze-Based Interfaces. In Proceedings of the Ninth Biennial
ACM Symposium on Eye Tracking Research & Applications (Charleston, South Car-

olina) (ETRA ’16). ACM, New York, NY, USA, 275–278. https://doi.org/10.1145/

2857491.2857493

Michael Barz, Florian Daiber, Daniel Sonntag, and Andreas Bulling. 2018. Error-Aware

Gaze-Based Interfaces for Robust Mobile Gaze Interaction. In Proceedings of the
2018 ACM Symposium on Eye Tracking Research & Applications (Warsaw, Poland)

(ETRA ’18). ACM, New York, NY, USA, Article 24, 10 pages. https://doi.org/10.

1145/3204493.3204536

A. Clemotte, M. Velasco, D. Torricelli, R. Raya, and R. Ceres. 2014. Accuracy and

Precision of the Tobii X2-30 Eye-tracking under Non Ideal Conditions. In Proceedings
of the 2nd International Congress on Neurotechnology, Electronics and Informatics -
NEUROTECHNIX,. INSTICC, SciTePress, Setúbal, Portugal, 111–116. https://doi.

org/10.5220/0005094201110116

Kirsten A. Dalrymple, Marie D. Manner, Katherine A. Harmelink, Elayne P. Teska, and

Jed T. Elison. 2018. An Examination of Recording Accuracy and Precision From Eye

Tracking Data From Toddlerhood to Adulthood. Frontiers in Psychology 9 (2018),

12 pages. https://doi.org/10.3389/fpsyg.2018.00803

Brendan David-John, Candace Peacock, Ting Zhang, T. Scott Murdison, Hrvoje Benko,

and Tanya R. Jonker. 2021. Towards Gaze-Based Prediction of the Intent to Interact

in Virtual Reality. In ACM Symposium on Eye Tracking Research and Applications
(Virtual Event, Germany) (ETRA ’21 Short Papers). ACM, New York, NY, USA, Article

2, 7 pages. https://doi.org/10.1145/3448018.3458008

Jan Drewes, Guillaume S. Masson, and Anna Montagnini. 2012. Shifts in Reported

Gaze Position Due to Changes in Pupil Size: Ground Truth and Compensation. In

Proceedings of the Symposium on Eye Tracking Research and Applications (Santa
Barbara, California) (ETRA ’12). ACM, New York, NY, USA, 209–212. https://doi.

org/10.1145/2168556.2168596

Andrew Duchowski, Eric Medlin, Nathan Cournia, Hunter Murphy, Anand Gramopad-

hye, Santosh Nair, Jeenal Vorah, and BrianMelloy. 2002. 3-D eye movement analysis.

Behavior Research Methods, Instruments, & Computers 34, 4 (01 Nov 2002), 573–591.

https://doi.org/10.3758/BF03195486

Austin Erickson, Nahal Norouzi, Kangsoo Kim, Joseph J. LaViola, Gerd Bruder, and

Gregory F.Welch. 2020. Effects of Depth Information on Visual Target Identification

Task Performance in Shared Gaze Environments. IEEE Transactions on Visualization
and Computer Graphics 26, 5 (2020), 1934–1944. https://doi.org/10.1109/TVCG.2020.
2973054

Ribel Fares, Shaomin Fang, and Oleg Komogortsev. 2013. Can We Beat the Mouse with

MAGIC?. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). ACM, New York, NY, USA, 1387–1390. https:

//doi.org/10.1145/2470654.2466183

AnnaMaria Feit, ShaneWilliams, Arturo Toledo, Ann Paradiso, Harish Kulkarni, Shaun

Kane, and Meredith Ringel Morris. 2017. Toward Everyday Gaze Input: Accuracy

and Precision of Eye Tracking and Implications for Design. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). ACM, New York, NY, USA, 1118–1130. https://doi.org/10.1145/

3025453.3025599

Sven-Thomas Graupner, Michael Heubner, Sebastian Pannasch, and Boris M.

Velichkovsky. 2008. Evaluating Requirements for Gaze-Based Interaction in a

See-through Head Mounted Display. In Proceedings of the 2008 Symposium on Eye
Tracking Research & Applications (Savannah, Georgia) (ETRA ’08). Association
for Computing Machinery, New York, NY, USA, 91–94. https://doi.org/10.1145/

1344471.1344495

Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, Jarodzka

Halszka, and Joost van de Weijer. 2011. Eye Tracking : A Comprehensive Guide
to Methods and Measures. Oxford University Press, Oxford, United Kingdom. 560

pages.

Kenneth Holmqvist, Marcus Nyström, and Fiona Mulvey. 2012. Eye Tracker Data

Quality: What It is and How to Measure It. In Proceedings of the Symposium on Eye
Tracking Research and Applications (Santa Barbara, California) (ETRA ’12). ACM,

New York, NY, USA, 45–52. https://doi.org/10.1145/2168556.2168563

Fotis P. Kalaganis, Elisavet Chatzilari, Spiros Nikolopoulos, Ioannis Kompatsiaris, and

Nikos A. Laskaris. 2018. An error-aware gaze-based keyboard by means of a hybrid

BCI system. Scientific Reports 8, 1 (04 Sep 2018), 13176. https://doi.org/10.1038/

s41598-018-31425-2

Mikko Kytö, Barrett Ens, Thammathip Piumsomboon, Gun A. Lee, and Mark

Billinghurst. 2018. Pinpointing: Precise Head- and Eye-Based Target Selection

for Augmented Reality. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA,

1–14. https://doi.org/10.1145/3173574.3173655

George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software 8, 14 (2003),
1–6. https://doi.org/10.18637/jss.v008.i14

G. Marsaglia and T. A. Bray. 1964. A Convenient Method for Generating Normal

Variables. SIAM Rev. 6, 3 (1964), 260–264. https://doi.org/10.1137/1006063

Moaaz Hudhud Mughrabi, Aunnoy K Mutasim, Wolfgang Stuerzlinger, and Anil Ufuk

Batmaz. 2022. My Eyes Hurt: Effects of Jitter in 3D Gaze Tracking. In 2022 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)
(Christchurch, New Zealand). IEEE, 310–315. https://doi.org/10.1109/VRW55335.

2022.00070

Diederick C. Niehorster, Thiago Santini, Roy S. Hessels, Ignace T. C. Hooge, Enkelejda

Kasneci, and Marcus Nyström. 2020. The impact of slippage on the data quality of

head-worn eye trackers. Behavior Research Methods 52, 3 (01 Jun 2020), 1140–1160.

https://doi.org/10.3758/s13428-019-01307-0

Nahal Norouzi, Austin Erickson, Kangsoo Kim, Ryan Schubert, Joseph LaViola, Gerd

Bruder, and Greg Welch. 2019. Effects of Shared Gaze Parameters on Visual Target

Identification Task Performance in Augmented Reality. In Symposium on Spatial
User Interaction (New Orleans, LA, USA) (SUI ’19). ACM, New York, NY, USA, Article

12, 11 pages. https://doi.org/10.1145/3357251.3357587

Thies Pfeiffer, Marc E. Latoschik, and Ipke Wachsmuth. 2008. Evaluation of Binocular

Eye Trackers and Algorithms for 3D Gaze Interaction in Virtual Reality Environ-

ments. JVRB - Journal of Virtual Reality and Broadcasting 5(2008), 16 (2008), 14 pages.
https://doi.org/10.20385/1860-2037/5.2008.16

Dario D. Salvucci and Joseph H. Goldberg. 2000. Identifying Fixations and Saccades

in Eye-Tracking Protocols. In Proceedings of the 2000 Symposium on Eye Tracking
Research & Applications (Palm Beach Gardens, FL, USA) (ETRA ’00). ACM, New

York, NY, USA, 71–78. https://doi.org/10.1145/355017.355028

Ludwig Sidenmark, Christopher Clarke, Xuesong Zhang, Jenny Phu, and Hans

Gellersen. 2020a. Outline Pursuits: Gaze-Assisted Selection of Occluded Objects

in Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing

Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376438

Ludwig Sidenmark and Hans Gellersen. 2019. Eye&Head: Synergetic Eye and Head

Movement for Gaze Pointing and Selection. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST
’19). ACM, New York, NY, USA, 1161–1174. https://doi.org/10.1145/3332165.3347921

Ludwig Sidenmark, Diako Mardanbegi, Argenis Ramirez Gomez, Christopher Clarke,

and Hans Gellersen. 2020b. BimodalGaze: Seamlessly Refined Pointing with Gaze

and Filtered Gestural HeadMovement. InACM Symposium on Eye Tracking Research
and Applications (Stuttgart, Germany) (ETRA ’20 Full Papers). ACM, New York, NY,

USA, Article 8, 9 pages. https://doi.org/10.1145/3379155.3391312

Ludwig Sidenmark, Mark Parent, Chi-Hao Wu, Joannes Chan, Michael Glueck, Daniel

Wigdor, Tovi Grossman, and Marcello Giordano. 2022. Weighted Pointer: Error-

aware Gaze-based Interaction through Fallback Modalities. IEEE Transactions on
Visualization and Computer Graphics 28, 11 (2022), 3585–3595. https://doi.org/10.

1109/TVCG.2022.3203096

Shumin Zhai, Carlos Morimoto, and Steven Ihde. 1999. Manual and Gaze Input

Cascaded (MAGIC) Pointing. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI ’99). ACM, New

York, NY, USA, 246–253. https://doi.org/10.1145/302979.303053

https://doi.org/10.1145/3334480.3382908
https://doi.org/10.1145/2578153.2578192
https://doi.org/10.1145/3379156.3391374
https://doi.org/10.1145/2857491.2857493
https://doi.org/10.1145/2857491.2857493
https://doi.org/10.1145/3204493.3204536
https://doi.org/10.1145/3204493.3204536
https://doi.org/10.5220/0005094201110116
https://doi.org/10.5220/0005094201110116
https://doi.org/10.3389/fpsyg.2018.00803
https://doi.org/10.1145/3448018.3458008
https://doi.org/10.1145/2168556.2168596
https://doi.org/10.1145/2168556.2168596
https://doi.org/10.3758/BF03195486
https://doi.org/10.1109/TVCG.2020.2973054
https://doi.org/10.1109/TVCG.2020.2973054
https://doi.org/10.1145/2470654.2466183
https://doi.org/10.1145/2470654.2466183
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1145/1344471.1344495
https://doi.org/10.1145/1344471.1344495
https://doi.org/10.1145/2168556.2168563
https://doi.org/10.1038/s41598-018-31425-2
https://doi.org/10.1038/s41598-018-31425-2
https://doi.org/10.1145/3173574.3173655
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.1137/1006063
https://doi.org/10.1109/VRW55335.2022.00070
https://doi.org/10.1109/VRW55335.2022.00070
https://doi.org/10.3758/s13428-019-01307-0
https://doi.org/10.1145/3357251.3357587
https://doi.org/10.20385/1860-2037/5.2008.16
https://doi.org/10.1145/355017.355028
https://doi.org/10.1145/3313831.3376438
https://doi.org/10.1145/3332165.3347921
https://doi.org/10.1145/3379155.3391312
https://doi.org/10.1109/TVCG.2022.3203096
https://doi.org/10.1109/TVCG.2022.3203096
https://doi.org/10.1145/302979.303053

	Abstract
	1 Introduction
	2 Related Work
	2.1 Types of Eye Tracking Error and Impact
	2.2 Error-aware Systems
	2.3 Open-Source Tools

	3 System Description
	3.1 Technical Specifications
	3.2 Error Simulation
	3.3 Adding the Eye Tracking Error
	3.4 Evaluation

	4 System Usage
	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

